
REPORT ON THE NOMAD SO INSTRUMENT LINE SHAPE (ILS) CALIBRATION 
 
Giuliano Liuzzi and Geronimo L. Villanueva (NASA Goddard Space Flight Center) 
May 2021 

Table of Contents 

1. Preface ............................................................................................................................ 1 

2. Instrumental line shape basics .......................................................................................... 2 

3. ILS calibration and modeling ........................................................................................... 3 

4. Functional form of the ILS and its origin ........................................................................... 5 

5. Results: examples for a single order and full solution ......................................................... 6 

6. Comparison with other ILSs: BIRA, IAA/CSIC (as of Mar/2021) ..................................... 8 

7. Impact of the ILS on retrievals: are A2 and s uniform? ..................................................... 10 

8. Retrieval of full CO2 profile with the new ILS solution ...................................................... 12 

9. The origin of the offset .................................................................................................... 13 

10. Final considerations: ILS recipe and offset recommendations ......................................... 14 
 

1. Preface 
 
The following documents describes updated results and efforts to produce a new calibration recipe 
for the Instrumental Line Shape (ILS) of NOMAD SO and a corresponding updated model for the 
spectral offset, which has been observed since the first calibration described in Liuzzi et al. (2019). 
The results obtained in this report are obtained by including a larger amount of data and orders than 
previous analyses, and by fully integrating the ILS derivation with the spectral offset, which ultimately 
is attributed to the AOTF.  
The new ILS results show that the recipe derived in May/2020 at GSFC is very similar to the new 
one, as shown in Figure 1. The new resolving power is 15% lower than the one derived initially, while 
the difference in the relative amplitude of the ILS components is only 0.05. All these differences can 
have a variable impact on different diffraction orders and different altitudes. Individually, the relative 
difference between two retrievals made with the two sets of ILS parameters should not be larger than 
the relative differences between the ILS parameters themselves (20%). Previous retrievals of water 
vapor, D/H and CO are done by mixing the information coming from several orders at each altitude, 
which blends the effect of the ILS parameterization with other sources of uncertainty of similar 
magnitude. Other retrieved parameters that do not require high-resolution radiances, such as aerosols, 
do not depend on the ILS parameterization. 
As for the AOTF, the offset has been investigated in previous works and widely adopted in previous 
retrievals as well and was able to grant satisfactory results in terms of consistency among different 
orders and spectral residuals. In this work, we introduce a new method to obtain an estimation of the 
offset, whose order of magnitude is consistent with previous works. 



 

 

 

 

Figure 1. Displacement between the 
two gaussians describing the ILS 
according to the original GSFC recipe 
(May/2020) and the new one 
derived in this report. 

2. Instrumental line shape basics 
 
When the radiation is received by an instrument, one of more optical components of the instrument 
(e.g. the slit, the grating, the geometry of the optical path of the light) result in the final spectral 
resolution. The Instrument Line Shape (ILS) of an instrument is the function that quantitatively 
describes the radiation as observed in each spectral channel (from now on, “pixel”) with respect to 
the input radiation.  
In mathematical terms, let 𝑅(𝜈) be the radiation entering the instrument. The observed spectrum 
𝑦(𝑥!), 𝑖 = 1…𝑁, in each of the N pixels, will result from the convolution of 𝑅(𝜈) with the ILS: 
 

𝑦(𝑥!) = 	. 𝑅(𝑣(= 𝑥!) + 𝑥) ∙ 𝐼𝐿𝑆(𝑥)𝑑𝑥
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As the ILS and the entering flux are described at a finite resolution, this process can be reduced to its 
discrete form: 

𝑦(𝑥!) = 	 6 𝑅7𝑣%8 ∙ 𝐼𝐿𝑆(𝑗)
%&%'()
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where the ILS kernel is defined on an appropriate number n of points and is normalized to 1 to 
preserve the incoming flux: 

6 𝐼𝐿𝑆(𝑗)
%&%'()

%&%'$)

= 1 ( 3 ) 

 
The functional form of the ILS depends on the instrument principles, configuration, and optical 
scheme. In the case of NOMAD, it is expected that the presence of a grating as central element of the 
spectrometer results in an ILS that follows the functional form of a sinc, which would yield significant 
contribution to the flux in a pixel with radiation from several wavenumbers away.  



However, this assumption can be verified by directly deriving the ILS functional form from the data, 
which can be done using different methods. In this report, we describe the derivation of the ILS using 
a self-convolution method, which exploits the full current knowledge of the instrument response and 
the information content of the observed spectra. 

3. ILS calibration and modeling 
 
The self-convolution method uses the information content of a spectrum in a completely agnostic 
way, i.e., without making any a-priori assumption on the functional form of the ILS. Importantly, in 
the case of NOMAD, the AOTF plays an important role in introducing flux from nearby diffraction 
orders into the observed spectrum, often resulting into superposition between atmospheric lines that 
fall in the same spectral pixel from distant wavelengths. The self-convolution method compares the 
observed spectrum with a fiducial model that considers the AOTF properties, therefore it can naturally 
take into account this phenomenon at least to a certain degree of accuracy defined by our knowledge 
of the AOTF response itself. 
By following the same formalism as the previous equations, the ILS can be described by the 
convolution between the low-resolution (=observed) spectrum and the corresponding high-resolution 
(=modeled) one: 

𝐼𝐿𝑆(𝑗) ≅ . 𝑦(𝑥! + 𝛿)𝑅(𝑣)𝑑𝛿 ≅ 6 𝑦<7𝑥!(%8 ∙ 𝑅(𝑥!)
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where M represents the number of pixels of the observed spectrum around the i-th pixel of the 
observed spectrum, and 𝑦< indicates the spectrum previously interpolated to the same sampling as the 
model radiance 𝑅 to perform the sum. 
 

 
Figure 2 . In this example, the black is the observed spectrum (x10 for visibility) in order 165, while the red is the 
model corresponding to the best fit (which is done before the convolution, see later). Within a window corresponding to 
a certain portion of the spectrum (30% in this case, which encompasses M pixels of the interpolated spectrum), the 
observed spectrum is translated, and the correlation is performed again, building the ILS function. The width of the 
window (M) and the maximum shift (j) can be chosen and varied on a case-by-case basis. 



As the observed spectrum is translated with respect to the model, Eq. (4) computes the j-th value of 
the ILS function across wavelength. A scheme for this process is shown in Figure 2 on an actual 
NOMAD spectrum from order 165.  
When using this method, it is crucial to choose appropriately both the width of the window on which 
the convolution is performed, and the maximum shift to be applied to the observed spectrum. The 
first one defines how much signal is entered into the calculation of the ILS and should be chosen as 
a compromise between the need of having a characterization of the ILS as much as local as possible, 
and the availability of bright lines in any given point of the chosen interval. 
As i is varied (Eq. (4)) across the whole observed spectrum, the ILS is reconstructed for each pixel of 
the observed spectrum. We can therefore summarize the main steps to estimate the ILS for all the 
pixels in the following steps: 

1) For the chosen order, an observed spectrum with visible atmospheric lines is chosen. 
2) Assuming a realistic model for the AOTF, a retrieval is performed to retrieve the abundances 

of the relevant molecular species, to correct and remove any continuum effect (i.e., the 
resulting spectrum is normalized to 1), and calibrate the wavelength of each pixel, resulting in 
𝑦. 

3) The abundance of the molecular species is used to compute the synthetic spectrum 𝑅 
(including AOTF contributions) at a resolving power much higher (x10, x20) than the 
observed spectrum. This represents the best estimate of the actual radiation reaching the 
grating of the instrument. Importantly, the spectral grid on which 𝑅 is computed must be in 
the proper unit of constant resolving power, as expected for a grating spectrometer. 

4) 𝑦 is interpolated to the grid of 𝑅, and from both the continuum is subtracted. 
5) Defining M and the maximum shift (value of j), the convolution is performed according to 

Eq. (4) for each original i. Typical values for these parameters can be those in Figure 2.  
6) ILS for each pixel is normalized to 1, continuum-subtracted and stored. 

 

 
Figure 3. Estimated ILS for each spectral pixel (x-axis). The intensity of the color scale is from 0 (black) to 1 
(white). 



An example of estimated ILS is shown in Figure 3. The matrix shown here has the spectral pixels of 
the observed spectrum and their wavenumber on the x-axis and the ILS wavenumber on the y-axis. 
By extracting the i-th column of this image, we can see the behavior of the estimated ILS for the i-th 
pixel of the observed spectrum. 
It can be seen that the center of each column varies slightly, with oscillations that can be as large as ± 
0.05 cm-1: these variations are not necessarily related to possible variability of the ILS itself, rather to 
residual issues in the frequency calibration of the observation. The matrix also shows aliases of nearby  
lines (CO2 in this case), which are present whenever the chosen maximum j to perform the correlation 
is close to the separation between nearby lines. 

4. Functional form of the ILS and its origin 
 
Once the ILS is derived from the self-correlation, the next step consists into elaborating an a-priori 
model to fit to it. While, as said, in principle the ILS of a grating is a sinc function, in many cases the 
line core can be reasonably modeled by a gaussian kernel which will be mostly defined by the resolving 
power of the instrument.  
In the case of NOMAD SO, the data suggest that the most probable form for the ILS is given by the 
superposition of two gaussian kernels with variable separation across the order. To be more specific, 
the observed spectrum has been seen to result from the superposition of two identical images of 
different intensity, each one resulting from a single gaussian kernel. Using the previous formalism, we 
can then define the spectrum R1 from the convolution with the first ILS, and the spectrum R2 from 
the convolution with the second ILS, defined as: 
 

⎩
⎪
⎨

⎪
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−(𝑥 − 𝜈!)/

2𝜎,,!/
I , 	𝑖 = {0, … ,319}	 

𝐼𝐿𝑆/.!(𝑥) = 𝐴,,! ∙ 𝐴/,!𝑒𝑥𝑝	 E
−(𝑥 − 𝜈! − 𝑏!)/

2𝜎/,!/
I , 	𝑖 = {0, … ,319}

 ( 5 ) 

 

 
Figure 4. 2-D optical scheme of NOMAD SO. The region 1 includes all the optical element that the light encounters 
after being diffracted by the grating, while the region 2 includes the AOTF and the slit.  



The origin of this ILS form is intimately connected to how each of the parameters in Eq. (5) relate to 
each other. A schematic view of this is shown in Figure 4, with the optical scheme of NOMAD SO 
and the possible origin for the double gaussian ILS. 
If the double gaussian is generated at any point of the region 1 by an optical element (e.g., a cracked 
lens, a slight misalignment), both the gaussians must preserve the properties dictated by the grating 
(and previously the slit) characteristics, that is essentially the width. In case the double gaussian arises 
somewhere in the region 2, e.g., because of the AOTF or the slit, that would still result in different 
images of the source that have to go through the grating, which would ultimately yield the two images 
with the same resolution.  
Based on this, we choose to simplify the parameterization given in Eq. (5), assuming that 𝜎,,! =	𝜎/,! =
𝜎! for every pixel. In addition, we choose to give ample a-priori liberty to the relative shift 𝑏! between 
the two gaussians, describing it as a third-order polynomial of the pixel number. 
The other assumption (verified later) about this parameter is that, if the second gaussian ILS follows 
the grating equation, the shift must do the same, and must be somehow scalable with the wavelength, 
that is with the diffraction order. Therefore, when we derive the ILS functional form and the 
coefficients, we do that for single orders, and then we verify whether or not this hypothesis holds. 
In synthesis, the form of the coefficients we choose as representative of the ILS is the following, for 
a total of 6 coefficients: 
 

P

𝐴,,! = 𝐴,				∀𝑖
𝐴/,! = 𝐴/				∀𝑖

𝑏! = 𝑝𝑜𝑙𝑦(𝛽'…1, 𝑖)
𝜎! = 𝜎										∀𝑖

 ( 6 ) 

5. Results: examples for a single order and full solution 
 
Figure 5 shows how the derived ILS for order 165 looks like, the corresponding best fit (as an image) 
and some examples of extracted rows, corresponding to specific spectral pixels. The spectrum that 
has been used for this exercise is acquired at 130 km, where the lines are not expected to be 
significantly saturated, if at all.  
The solidity of this solution can be tested by trying to investigate how it varies by changing the 
observed spectrum and moving to altitudes where spectral lines are saturated. This is a key test, as 
other methods can be susceptible to line saturation, which could result into a bias in the apparent line 
width and resolving power. Figure 6 shows how this can impact the ILS parameters derived at different 
degrees of saturation. Despite using saturated lines, the self-correlation is still able to yield consistent 
results across different regimes.  
 
Once a solution is derived for a single order, we repeat the procedure for all the orders. For the ILS 
derivation, it is best practice to use orders across the whole spectral range covered by NOMAD and 
to focus on those orders where lines are of similar intensities and with spacing as much as regular as 
possible. Based on this, we have chosen to work on the following orders: 119, 121, 124, 140, 141, 145, 
149, 154, 156, 161, 165, 171, 190, 191. To work on a uniform dataset, we have chosen spectra from 
the atmospheric full-scan 20181006_090808, which comprises ~15 acquisitions per order per spectral 
bin at altitudes from 0 to 200 km. In this report, we consider only spectra from bin 3, which has been 
used at GSFC in routine retrievals. Yet, because of the suspected cause of the double gaussian shape 
for the ILS, it is quite possible that the solution we obtain here could be not adaptable to other spectral 
bins, because of projection effects onto the detector.  



 

  

   
Figure 5. ILS solution for order 165. Left top: derived ILS. Right top: ILS best-fit model according to the previous 
equations. Bottom panels: extracted columns from the ILS image (black) and best fit (red) corresponding to pixels 20, 
145 and 295 out of 320. X-axis is purely indicative, as it is in wavenumbers x pixel number. 

 

 
Figure 6. Left column: derived ILS for 3 different altitudes characterized by different saturation regimes of the spectral 
lines. Middle column: corresponding best fit model for the ILSs. Right column: retrieved values for the coefficients in 
Eq. (6) and corresponding boundaries for the shift and RP.  



For all the orders, we have chosen one single spectrum at an altitude where the H2O, CO2, or CO 
lines are not saturated, that are respectively: 26 km for orders 119, 121 and 124; 42 km for orders 140, 
141 and 145; 59 km for order 149; 80 km for orders 156 and 158; 130 km for orders 161, 165; 66 km 
for order 171; and 85 km for orders 190 and 191.  
The polynomial fit for the displacement between for the two gaussians with respect to the pixel 
number is shown in Figure 7. Importantly, in this plot the displacements are normalized by the ratio 
between a reference wavenumber (3700 cm-1) and the central wavenumber of the order. The fact that 
the normalized curves are consistent with each other shows that the displacement follows the grating 
equation, where the pixel pitch depends (approx. linearly) on the wavelength. 
The final expression, common to all orders, is obtained by a final least-squares minimization of the 
polynomial expressions obtained by each order and is shown in Figure 7 in solid black. 
As for the other parameters, i.e., the resolving power and the amplitude of the second gaussian with 
respect to the first, we find a constant value of respectively 17,000 and 0.30 across all the orders. In a 
next section, we will examine the possible variations of these two parameters. 

6. Comparison with other ILSs: BIRA, IAA/CSIC (as of Mar/2021) 
 
The solution we have retrieved for order 165 has been tested and compared to the current (Mar/2021 
latest update) solutions from other approaches, which are mostly based on fitting isolated spectra lines 
with the same functional form presented in Eq. (5). The table with the number of coefficients used to  
describe each of the ILS parameters is presented here. The number of coefficients in the table 
corresponds to the degree of the polynomial (1 for constant, 2 for linear, etc…) used to describe each 
parameter in a specific order. 
 

 
Figure 7. Polynomial fitting of the displacement between the two gaussians for each order, normalized to a common 
wavenumber. The average solution for all orders is in black. 
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BIRA 2 2 2 2 2 2 12 

IAA  2 2 2 2 8 

GSFC  1 1  3 or 4 6 
 

Table 1. Number of parameters used in each parameterization, according to the latest formulation (Mar/2021). 

 

  

  
Figure 8. Comparison between retrievals performed using different ILS parameterizations. The “GSFC old” solution 
follows the same formalism as the new one, except for the degree of the polynomial of the displacement (second vs. 
third), and a different RP (20,000 vs. 17,000) and amplitude of the second gaussian (0.25 vs. 0.30). The altitudes, 
from top left to bottom right are 67 km, 103 km, 113 km and 141 km. 

 
 



A comparison between these solutions has been done directly on actual retrievals: using PSG, we have 
generated high resolution radiances which include the latest AOTF parameterization by GSFC 
(Mar/2021). Then each ILS solution is used to generate NOMAD spectra, and a retrieval is performed 
at different altitudes (using a simple Levenberg-Marquardt scheme), to see how the solutions compare 
in terms of spectra residuals, which offer a relevant metric to test the accuracy of each ILS 
parametrization directly on data. The wavenumber calibration and the polynomial continuum are both 
iteratively corrected. The results of this comparison are presented in Figure 8 for different altitudes. 
All the schemes perform relatively similarly, which shows that a successful description of the ILS can 
be obtained with few parameters and susceptible to a high degree of simplification. Therefore, the 
search for a solution as much simple as possible and common to all groups is justified. 

7. Impact of the ILS on retrievals: are A2 and s uniform? 
 
One of the most significant limitations of the self-convolution technique in this particular case is that 
the actual estimation of the properties of the second gaussian can be problematic, mainly because of 
two facts: 1) the second gaussian is superimposed to the first one in a large portion of the spectrum, 
and 2) the self-convolution uses a-fortiori only a portion of the spectrum, rather than its local properties, 
making it difficult to characterize the punctual properties of the fainter, second gaussian. 
 
 

Order Full spectrum A2 Full RP Left spec. A2 Left RP Right spec. A2 Right RP 

116 0.275 17,500 0.35 16,800 0.2 16,800 

118 0.3 16,800 0.3 18,200 0.25 16,800 

121 0.3 16,800 0.35 17,500 0.2 17,000 

122 --- --- 0.35 17,500 0.2 16,800 

140 0.275 16,800 0.3 17,500 0.25 16,800 

141 0.275 16,800 0.35 17,500 0.25 16,800 

148 0.25 16,800 0.25 18,200 0.2 18,200 

149 0.3 16,800 0.35 18,200 0.2 18,200 

156 0.275 16,800 0.35 17,500 0.25 16,800 

158 0.25 16,800 0.25 16,800 0.25 16,800 

165 0.25 16,800 0.35 17,500 0.2 17,500 

171 0.3 16,800 0.35 16,800 0.2 17,500 

Average 0.277 16,863.6 0.325 17,500 0.221 17,166.7 
May/2020 
Solution 0.25 20,000 0.25 20,000 0.25 20,000 

 
Table 2. Results from the analysis of each order, reporting the optimal (i.e., lowest RMSE) values for the RP and 
the amplitude of the second gaussian. In red the values whose improvement in RMSE is significant (>20%). 



 

  

  

  
Figure 9. Sample results of the RP vs. A2 analysis. The x-axis reports the RP, the y-axis the A2. The colorbar 
shows the RMSE. 
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A more sensitive way to test these properties is to work on actual retrievals, by iteratively changing 
these two properties and seeing what the real impact on the residuals and the retrieved parameters is. 
To this aim, we have performed several retrievals on the following orders: 116, 118, 121, 122 (altitude 
35 km, no saturation); 140, 141, 148, 149 (42 to 50 km); 156, 158 (77 km); 165 (131 km); 168, 171 (40 
km); for each spectrum, we perform a retrieval with RP of 16,800, 17,500, and 18,200, while the 
gaussian amplitude is 0.20, 0.25, 0.30 or 0.35, for a total of 12 retrievals per case. To test the accuracy, 
we simply look at the RMSE of each retrieval, and compile matrices of the RMSE values and see if 
any trend arises. This is done on both the left side and the right side of the spectrum as well, to identify 
strong trends within the same spectrum with pixel. 
The results of this analysis are shown in Figure 9 (for some sample cases) and  
Table 2 (for all of them). We can see that there is no specific trend for the RP, neither across orders 
nor in the same order, while the A2 could have some variability across pixels, as the minimum RMSE 
in the left part of the spectrum is obtained in some cases with higher A2 values, and for lower A2 on 
the right. Nevertheless, the change of RMSE is significant (> 20%) only in a minority of cases, 
therefore we chose to not to introduce any definite variability of neither the RP nor A2 in our final 
formulation of the ILS. As for the RP, indeed, this is justified by the explanation of the double gaussian 
as given in previous sections (i.e., “there is only one grating”). 
The final recipe for the ILS is given at the end of this document, together with the procedure 
to create a synthetic spectrum. 
 

8. Retrieval of full CO2 profile with the new ILS solution 
 
The new ILS solution has been further tested to verify its robustness throughout the whole NOMAD 
spectral range in the context of CO2 vertical profile retrievals. This is an important diagnostic, since 
CO2 lines exhibit a variety of degrees of saturation in different orders, therefore they can probe 
different altitudes and put to stress the ILS model.  
We have chosen the same full scan used for ILS calibration purposes to retrieve the CO2 column in a 
set of 16 diffraction orders, divided in 4 sets: 116, 118, 121, 122 (low-altitude); 140, 141, 148, 149 
(mid-altitude); 156, 157, 158, 159 (mid-high altitude); 163, 164, 165, 166 (high-altitude). This choice is 
a compromise between the need to cover the whole atmosphere up to 150 km, and the fact that 
selecting nearby orders is very useful to verify whether this ILS solution gives consistent results, net 
of other effects that are excluded from the fit (in particular, temperature dependencies of high-j lines 
vs. low-j lines). The choice of the full-scan grants that the instrument is looking at the same 
atmosphere (net of lat-lon variability across altitudes) in all the orders taken at similar altitudes, given 
the acquisition time of a full orders cycle. For these retrievals, we assume an a-priori atmosphere as 
given by co-located interpolated MCD v.5.3 profiles, and we fit only a scaling factor to the a-priori 
CO2 column along the line of sight, with no inversion of the overall profile. 
The objective of this exercise is also to verify the presence of an offset, i.e., extra featureless flux that 
is not accounted for in the current modeling of the instrument. For a chosen column of a gas, the 
presence of an offset would result in a decreased line depth in the model spectrum compared to the 
case with no offset; when performing a retrieval, that would impact the estimated CO2 column and 
generally result in an increase of the retrieved CO2 column as the offset increases. It is expected also 
that the impact should be larger for saturated lines, as a small change in the apparent line depth results, 
in the curve of growth correspond to large changes in the column. 
The way in which the offset dy is introduced into the simulated radiances is shown by the following 
equation: 



  
Figure 10. Retrieval of CO2 profiles for different orders, without applying any offset (left) and with a 25% offset 
common to all the orders (right). 

 
𝑦233(𝑥!) = (1 − 𝛿𝑦) ∙ 𝑦(𝑥!) + 𝛿𝑦 ( 7 ) 

 
with the notation that follows previous equations. This is a way to account for the offset independently 
of its origin, which will be discussed later.  
To explore the consistency of the ILS and the effect of introducing an offset, we have performed two 
retrievals of full profiles, without any offset and with an offset of 0.25 for all the orders. This second 
attempt is equivalent to say that 25% of the total observed flux does not come from the observed 
diffraction order and is featureless. The results of this test are shown in Figure 10. 
Overall, profiles from nearby orders show a good degree of consistency among each other, with 
differences that are likely due to unaccounted (in the fit) temperature dependencies. This is the case 
of orders 163-166 vs. 164-165 (wing vs. center of the vibrational band) and of order 149 vs. 140-141-
148. The most prominent effect, however, is the extremely low scaler retrieved for orders in the group 
163-166 around 110 km. This is the altitude where these lines start to transition from a saturated to a 
non-saturated regime. When adding the offset, the effect is maximum here as expected, raising the 
retrieved scaler by a factor of 6. At lower altitudes, the offset has a much smaller effect on the retrieved 
CO2. The agreement among groups of orders with altitude is acceptable within the a-posteriori 
uncertainties, however the idea is that the agreement can be further improved by assigning a specific 
offset to each order or group of nearby orders. Further analyses in this sense are needed to investigate 
the optimal offset for each order. 

9. The origin of the offset 
 
We have investigated the possible origin of a spectra offset of the intensity as deduced from this 
exercise, and we have isolated at least 3 possible explanations for it: 

1) Dark subtraction: before the normalization with respect to the out-of-atmosphere radiance, 
spectra are dark-subtracted. If the dark used for the subtraction exhibits temporal variations 
across an occultation, this may result in a residual offset in the normalized spectra. However, 



for NOMAD SO the dark has usually an intensity between 10% and 20% of the signal, and 
the variations of the dark are usually not higher than 10% of the dark. This results in the 
possibility that unaccounted dark could yield a 1% to 2% baseline, much lower than the effects 
observed on spectra from various orders. 

2) ILS functional form: as said, in principle the ILS of a grating results from diffraction effects, 
and ultimately is described by a sinc function. When using a gaussian, the contribution from 
the wings is not accounted for, resulting in an offset. The effect would be exactly equivalent 
to the one simulated in the previous exercise, yet a 25% offset is very significant. 

3) AOTF offset: the AOTF could be characterized by a baseline that introduces extra flux from 
the nearby orders. On a scale of ±7 orders, a 25% baseline would result in an AOTF baseline 
of 0.016, or by a Gaussian base whose amplitude is scaled accordingly and whose contribution 
tends to 0 as we go further from the main order. This effect should be further explored, also 
because an AOTF baseline can change the depth of lines coming from different orders in a 
different way, potentially being easier to identify than a simple baseline due to the ILS.  

In Figure 11 we show the difference between adding a simple 25% offset to the spectrum as done in 
the previous exercise and adding an AOTF baseline whose area over ±7 orders is equivalent to that. 
The addition of the AOTF baseline has similar effects on the retrieved CO2 column than adding a 
simple offset, with the further advantage of improving spectral residuals. 

10.Final considerations: ILS recipe and offset recommendations 
 
The recipe for the ILS as derived in this work can be described with 6 coefficients (not accounting for 
A1), that are the following according to the formalism of Eq. (6): 

⎩
⎨

⎧
𝐴,,! = 1.0				∀𝑖
𝐴/,! = 0.3				∀𝑖

𝑏! = 𝑝𝑜𝑙𝑦7𝛽',…,1, 𝑖8 ∗ 𝑣/3700
𝑅𝑃 = 17,000										∀𝑖

 

𝛽',…,1 = [3.528 ∙ 10$4, −3.3977 ∙ 10$5, 1.7475 ∙ 10$1, −6.4424 ∙ 10$1] 

( 8 ) 

 

  

 

 

Figure 11. Comparison between fits performed adding an 
offset to the simulated spectra (tops) and an equivalent 
AOTF baseline (bottoms) for a sample of cases. Top left: 
order 141, 33 km; Top right: Order 149, 41 km; 
Bottom left: order 165, 67 km. 



The simulation of a synthetic spectrum is done as follows: 
1) A spectrum is synthesized at a resolution at least at 10x the NOMAD SO resolution, on a 

spectral range that covers the number of desired nearby orders. 
2) Orders are summed according to the AOTF and blaze model. 
3) Spectrum is convolved to the RP. 
4) A second spectrum is interpolated with the frequency solution displaced in each pixel by b. 

This spectrum is multiplied by A2. This permits that a single standard convolution can be 
applied, and no special convolution/windowing approach is needed. 

5) The two spectra are summed and divided by A1+A2.   
 
Based on the analysis presented in this report, the possibilities to refine this recipe would be the 
following: 

1) Add another coefficient to describe a linear dependency of A2 with pixel number. 
2) Potentially simplify to a second-order polynomial the shift. 

 
As for the offset, we will keep exploring the possibility of adding a small offset to the AOTF and 
evaluate the impact on the retrieved CO2 columns at various altitudes.  


